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ABSTRACT

A time-dependent version of the cost-loss ratio situation is described and the optimal use and economic
value of meteorological information are investigated in this decision-making problem. The time-dependent
situation is motivated by a decision maker who contemplates postponing the protect/do not protect decision
in anticipation of obtaining more accurate forecasts at some later time (i.e., shorter lead time), but who also
recognizes that the cost of protection will increase as lead time decreases. Imperfect categorical forecasts, calibrated
according to past performance, constitute the information of primary interest. Optimal decisions are based on
minimizing expected expense and the value of information is measured relative to the expected expense associated
with climatological information.

Accuracy and cost of protection are modeled as exponentially decreasing functions of lead time, and time-
dependent expressions for expected expense and value of information are derived. An optimal lead time is
identified that corresponds to the time at which the expected expense associated with imperfect forecasts attains
its minimum value. The effects of the values of the parameters in the accuracy and cost-of-protection models
on expected expense, optimal lead time, and forecast value are examined. Moreover, the optimal lead time is
shown to differ in some cases from the lead time at which the economic value of imperfect forecasts is maximized.
Numerical examples are presented to illustrate the various resuits. The implications of these results are discussed
and some possible extensions of this work are suggested.
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1. Introduction

Prescriptive studies of applications of weather and
climate information, based on models of decision-
making problems, can provide valuable insights into
the rational use and economic benefits of meteorolog-
ical forecasts. Moreover, although it is obviously de-
sirable to investigate forecast use and value in the con-
text of real-world situations, consideration of prototype
weather /climate-information-sensitive problems can
also yield important results. The so-called ““cost-loss
ratio situation” is a simple prototype decision-making
problem that has been used extensively within the me-
teorological community as a means of investigating
the optimal use and economic value of weather and
climate forecasts.

The basic cost-loss ratio situation is a static (that is,
“one-shot”) decision-making problem in which a de-
cision maker must decide at a particular time whether
or not to protect an activity or operation against adverse
weather in the face of uncertainty as to whether or not
such weather conditions will actually occur. If protec-
tive action is taken, a cost of protection is incurred;
however, an even larger loss is experienced if protective
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action is not taken and adverse weather occurs. Since
this situation is (by design) weather/climate-infor-
mation-sensitive, it provides a potentially useful
framework within which to investigate the use and
value of meteorological forecasts. Studies involving a
static, fixed-time version of the two-action, two-event
cost-loss ratio situation have been undertaken by
Thompson (1952), Thompson (1962), and Murphy
(1977) among others.

In recent years the basic cost-loss ratio situation has
been extended in a variety of ways. For example, Mur-
phy (1985) described an N-action, N-event extension
of the static, fixed-time model. Moreover, dynamic or
sequential models have been formulated to analyze in-
terrelated repetitive decisions in the context of the basic
situation (e.g., Epstein and Murphy 1988; Murphy et
al. 1985). Moreover, considerable attention has been
devoted to the investigation of the relationship between
forecast quality and forecast value in the context of
both static and dynamic versions of this problem (e.g.,
Katz and Murphy 1987, 1990; Murphy et al. 1985).

The purpose of this paper is to investigate a time-
dependent version of the cost-loss ratio situation. In
this situation, only a single decision (to protect or not
protect) is made, but the decision maker may choose
to postpone the decision until forecasts of greater ac-
curacy (associated with a shorter lead time) become
available. The penalty for postponing the decision
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manifests itself in terms of an increased cost of pro-
tection. Thus a tradeoff may exist between waiting for
more accurate forecasts—which generally would lead
to less “expensive” decisions—and possibly incurring
a greater expense due to more costly protective mea-
sures. This paper investigates the nature of this tradeoff
both in general and for specific forms of accuracy/lead-
time and cost-of-protection/lead-time functions and
explores optimal decisions and the value of information
in this context.

The time-dependent cost-loss ratio situation is de-
scribed in section 2. This section also presents general
expressions for the expected expense and expected
value of imperfect forecasts. Section 3 includes specific
expressions and results for the situation in which the
relevant time-dependent quantities are modeled using
exponential functions. These results are illustrated by
means of several numerical examples in section 4. Sec-
tion 5 contains a discussion of the results and some
concluding remarks.

2. Time-dependent situation: background and basic
considerations

a. Fixed-time situation

The basic cost-loss ratio situation is a static, fixed-
time, decision-making problem involving two ac-
tions—protect (a = 1) and do not protect (a = 0)—
and two events—adverse weather (x = 1) and no ad-
verse weather (x = 0). If the decision maker takes pro-
tective action (a = 1), a cost of protection C'is incurred
(regardless of whether x = 1 or x = 0). On the other
hand, if protective action is not taken (a = 0) and
adverse weather occurs (x = 1) the decision maker
experiences a loss L. Finally, if protective action is not
taken (a = 0) and adverse weather does not occur (x
= 0), no expense (cost or loss) is incurred. In order to
consider situations with nontrivial solutions, we assume
throughout this paper that 0 < C < L.

In the absence of forecasts, it is assumed that the
protect/do not protect decision is made on the basis
of climatological information. This information con-
sists solely of the climatological (or prior) probability
of adverse weather =, where 7 = P(x = 1)[P(x = 0)
= 1 — «]. The forecasts of interest here are categorical
forecasts of adverse weather (z = 1) or no adverse
weather (z = 0). After calibration, these imperfect cat-
egorical forecasts are represented by the conditional
(or posterior) probabilities p, and py, where p; = P(x
=1llz=1)and py = P(x = 1]z = 0)[P (x = 0|z
=1)=1—-piand P(x=0|z=0)=1— po]. Thus,
calibrated categorical forecasts can also be viewed as
primitive (that is, two-valued) probabilistic forecasts,
with probability values p; and py. Without loss of gen-
erality, it can be assumed that the climatological and
conditional probabilities satisfy the ordering 0 < po
< m < p, < 1. Finally, the marginal (or predictive)

MONTHLY WEATHER REVIEW

VOLUME 118
. Forecasts/ -, Events/ ~ Terminal
Alternatives Probabilities Actions Probabilities expenses
- c
A A P‘
ezt —__Ip,

FIG. 1. Decision tree for basic fixed-time cost-loss ratio situation
(recall that p, = ; see text for additional details).

probability of a forecast of adverse weather is denoted
by p., where p, = P(z=1)[P(z=0)=1—p,.].

Consistency between the climatological, conditional,
and predictive probabilities requires that

(1)

Moreover, to simplify matters further in this paper, we
will assume that p, = w. That is, it is assumed that the
probability of a forecast of adverse weather is equal to
the climatological probability of adverse weather. This
assumption implies, from (1), that

n =p.pr + (1 - pz)pO-

(2)

Thus, under the assumption that = is known, the prob-
ability p; (w < p; < 1) completely determines the char-
acteristics of the imperfect forecasts. In particular, cli-
matological and perfect information are the special,
limiting cases of the forecasts in which p; = = and p,
= 1, respectively.

The static, fixed-time model of the cost-loss ratio
situation is depicted in the form of a decision tree in
Fig. 1. This tree contains the relevant actions, events,
(terminal) expenses, forecasts, and probabilities (cli-
matological, conditional, and predictive). The initial
decision, on the part of the decision maker, relates to
whether or not to “acquire” the forecasts, and this de-
cision is assumed to be based on the expected expenses
associated with these two alternatives (see section 2c).
Under the assumption that the cost of acquiring the
forecasts is negligible, the difference between these ex-
pected expenses represents the value of the forecasts
(see section 2d).

po=m(1—py)/(1—m).
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b. Time-dependent situation

To motivate the formulation of a time-dependent
version of the basic cost-loss ratio problem, consider
a situation in which a decision maker contemplates
postponing the protect /do not protect decision in an-
ticipation of obtaining more accurate forecasts at some
later time (that is, shorter lead time). In this regard,
almost all studies of forecast accuracy as a function of
lead time have shown that the former is a decreasing
function of the latter (e.g., Murphy and Sabin 1986;
Sanders 1986). On the other hand, the cost of protec-
tion would be expected to increase as lead time de-
creases because additional resources (e.g., equipment
and/or personnel ) generally would be required to pro-
tect the activity or operation in the remaining time
available. Thus a potential tradeoff may exist as lead
time decreases between a decrease in expected expense
associated with forecasts of greater accuracy and an
increase in expected expense arising from a greater cost
of protection. It seems reasonable to assume that the
loss L would not be time dependent.

This time-dependent decision-making problem is
depicted schematically in the form of a decision tree
in Fig. 2. Here, lead time (the time between the protect/
do not protect decision and the start of the period dur-
ing which the activity actually takes place) is denoted
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FIG. 2. Decision tree for time-dependent cost-loss ratio situation
(recall that p, = =; see text for additional details).
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by t and is represented by a discrete set of integer values
(t=1, - -+, T). The decision maker is assumed to
choose a particular time ¢ at which to acquire the fore-
casts or to decide not to acquire the forecasts; in the
latter case, the protect/do not protect decision is based
on climatological information (which is not time de-
pendent). Note that both the cost of protection C and
the parameter p,—the measure of forecast accuracy
(see section 2a)—are considered to be functions of
lead time ¢.

More specifically, both C = C(t) and p; = p,(¢) are
assumed to be continuous, monotonically decreasing
functions of ¢ in this paper. In the case of the cost of
protection, C(¢) is assumed to be relatively large for
short lead times [C(0) < L] and relatively small for
long lead times [ C(o0) > 0]. Moreover, the accuracy
of the imperfect forecasts is assumed to approach the
accuracy of perfect forecasts [that 1s, p;(¢) = 1] as ¢
approaches zero and to approach the accuracy of cli-
matological information [that is, p,(¢) = =] as ¢ ap-
proaches infinity. Specific functional forms for C(t)
and p, (1) will be introduced in section 3a.

¢. Expected expenses and optimal decisions

It will be assumed throughout this paper that the
decision criterion is the minimization of expected ex-
pense. That is, the decision maker is assumed to choose
the action—protect (a = 1) or do not protect (a = 0)—
for which the expected expense is a minimum, where
the expected expense of an action is the probability-
weighted average of the expenses (costs and/or losses)
associated with that action. It is also assumed that this
same criterion is applied to the decision related to the
acquisition of the forecasts. Minimizing expected ex-
pense is equivalent to maximizing expected utility un-
der the assumption that the decision maker’s utilities
are linearly related to the expenses (Winkler and Mur-
phy 1985).

1) CLIMATOLOGICAL INFORMATION

Let Ec(a = 1)and Ec(a = 0) denote the expected
expenses associated with taking and not taking protec-
tive action when these decisions are based solely on
climatological information. In the basic fixed-time sit-
uation, Ec(a=1)=xC+ (1 — 7)C = Cand Ec(a
=0)=aL+ (1 +7)0 = xL. Thus, the decision maker
will choose a = 1 (protect)if r > C/L and a = 0 (do
not protect) if # < C/L. Moreover, if the minimum
expected expense (incurred by the decision maker) in
this case is denoted by E¢, then

Ec = min(C, nL). (3)

It will be convenient to rescale this minimum expected
expense by dividing by the loss L. Thus, if E- = E¢/
L, then
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(4)

¢ =min(C’, 7)

[ from (3)], where C' = C/L.
In the time-dependent situation, C’' = C'(¢) [=C(¢)/
L] and E¢ = E¢(t), where

c(?) = min[C'(2), 7] (5)

[ from (4)]. Since C'(¢) is assumed to be a (monoton-
ically) decreasing function of ¢, it is evident from (5)
that three distinct cases can be identified: 1) case I, =
< C'(¢) for all values of t; 2) case 2, # < C'(¢) for
small values of ¢ and = > C'(¢) for large values of ¢;
and 3) case 3, 7 > C'(¢) for all values of ¢. In case 1
the decision maker will never protect and E(¢t) = «
(a constant) for all ¢£. On the other hand, in case 2 a
value of t exists for which = = C'(¢). If this critical
value of ¢ is denoted by ¢*, then the decision maker
will not protect for ¢ < t* with E'-(?) = =, whereas he/
she will protect for ¢ > t*, with E¢(¢) = C’(¢) (a de-
creasing function of ). Thus, t* plays the role in the
time-dependent situation that the cost-loss ratio (C/
L) plays in the fixed-time situation. Finally, in case 3
the decision maker will always protect and E¢(t)
= C’(¢) for all . Since the value of imperfect forecasts
depends on E'c(t) (see section 2d), these three cases
will be of interest in subsequent sections of the paper.

2) IMPERFECT FORECASTS

If we let Er denote the expected expense associated
with the forecasts in the fixed-time situation, then

Erp=7C+ (1 — m)pyL (6)
(e.g., Katz and Murphy 1987) or, from (2),
Er=nC+ n(1 — p,)L. )

Strictly speaking, the expressions for Erin (6) and (7)
are valid only when py < C/L < p,. However, when
C/L < py < p, or py < p; < C/L, the expression for
Erisidentical to Ecin (3) (under these conditions, ,
Do, and p all lead to the same optimal actions). Since
we are primarily concerned in this paper with situations
in which a positive difference exists between Ec and
Ex(that is, situations in which the value of information
is nonzero), attention is focused here on the case in
which po < C/L < p,.

The first term on the right-hand side (rhs) of (7)
relates to forecasts of adverse weather (z = 1) and tak-
ing protection action (a = 1), whereas the second term
on the rhs of (7) relates to forecasts of no adverse
weather (z = 0) and not taking protective action (a
= 0). As in the case of climatological information, it
will be convenient to rescale Er in (7) by dividing by
the loss L. Thus, if E> = Er/L, then from (7),

Er=xC"+ =(1 — py). (8)

In the time-dependent situation, C' = C'(¢), ;
= p,(1), and E» = E'¥(t), where :
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E'x(t) = =[1 + C'(1) — pi(1)] (9)

[ from (8)]. Since both C'(¢) and p,(¢) are decreasing
functions of ¢, the behavior of E'=(¢) in (9) depends
on the specific forms of these time-dependent functions.
In general, however, the decision maker wants to make
his/her decision on the basis of the imperfect forecasts.
at the lead time ¢ for which E=(¢) is a minimum.
If we denote this lead time by fyia, then it is evi-
dent from (9) that such a minimum exists only if
aC'(t)/dt| =, = dp1(t)/dt|,~,,,, [obtained by setting
OE=(t)/0t = 0] and 8%C'(1)/0t?| 1=, > 9°pi(2)/
9| ,=,,,- The expression for fmin, an important
parameter in this study, obviously depends on the
forms of the functions C'(¢) and p,(¢).

d. Value of information

Here the phrase “value of information” refers to the
economic value of the imperfect forecasts, which is
defined as the difference between the expected expense
associated with climatological information and the ex-
pected expense associated with the forecasts. Thus, if
V¢ denotes the value of these forecasts (standardized
by dividing by L) in the fixed-time situation, then

r= Ec— EF, (10)
or, from (4) and (8),
F=min(C, ) — «C' — x(1 — p;). (11)

In the ex ante, decision-analytic approach to the value
of information taken in this paper, V= >0 (e.g., see
Katz and Murphy 1987).

In the time-dependent situation, C' = C'(1), p,
= p, (1), and V= = V=(t), where

w(t) = min[C'(¢), 7] — #{1 + C'(1) = p(D)] (12)

[from (11)]. As in the case of E%(¢), the behavior of
V'e(t) in (12) depends on the specific forms of the
functions C'(¢) and p, (). In this regard, however, the
lead time ¢ at which V'=(¢) attains its maximum value
is of some interest (from the point of view of the fore-
caster). We will denote this lead time by 7., which
can be determined by differentiating V'=(¢) with respect
to ¢ and setting this partial derivative equal to zero
[ moreover, the second derivative of V'=(¢) must be less
than zero at /., for the maximum to exist].
Examination of V() in (12) reveals that, when «
< C'(t) (case 1 and, when this condition holds, case
2), V'=(t) is linearly related to E'=(t) [since E(t)
= 7, aconstant]. As a result, Z,,x = {min in this situation;
that is, the expected expense associated with imperfect
forecasts and the expected value of these forecasts are
minimized and maximized, respectively, at the same
lead time. On the other hand, when 7 > C’(t) (case 2,
when this condition holds, and case 3), V(¢) is no
longer linearly related to E£7#(¢) [since E¢(¢) = C'(¢),
a time-dependent function], with the result that .4
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# [ (In general). In this latter situation, the lead
time that minimizes the expected expense associated
with the forecasts will not be the lead time that max-
imizes the expected value of the forecasts. These con-
siderations will be discussed for the specific functional
forms of the parameters C'(¢) and p; () in section 3c.

3. Time-dependent situation: specific models
a. Exponential accuracy and cost-of-protection models

It is assumed here that both the accuracy parameter
p1(t) and the cost-of-protection parameter C'(¢) de-
crease exponentially as lead time ¢ increases. In the
case of p,(2), some evidence exists (e.g., see Sanders
1986; Weingirtner 1987) to support this assumption.
Specifically, we assume that p,(¢) is an exponentially
decreasing function of ¢ of the following form:

n()=(—=n)e™ +m, (13)

where A (>0) is a parameter to be specified. This par-
ticular exponential function has been chosen so that
pi(2) = 1 when t = 0 (zero lead time) and p,(¢) = =
when ¢t = oo (infinite lead time). As indicated in sec-
tion 2, the imperfect forecasts approach the accuracy
of perfect information for very short lead times and
approach the accuracy of climatological information
for very long lead times. The parameter 4 determines
the rate at which p,(¢) increases (decreases) as ¢ de-
creases (increases). It can be interpreted in terms of
the e-folding time (z,) for the “standardized” version
of this model; that is, the time at which p’ () {=[p:(¢)
—x]/(1 — )} decreases to 1 /e of its initial value (that
is, its value at ¢ = 0). In this case 7, = 1/4.

The behavior of p,(?) for selected values of A4 is de-
picted in Fig. 3 for values of ¢ on the closed interval
[0, 10], when 7 = 0.2. As described by p, (), the rate
of decrease in forecast accuracy as ¢ increases is greater
for larger values of A than for smaller values of 4. For
t=3,p(t) =~ 0.89,0.79,0.58, and 0.38 when 4 = 0.05,
0.10, 0.25, and 0.50, respectively. If the units of 7 are
taken to be days, then these values of 4 correspond to
e-folding times of 20, 10, 4, and 2 days, respectively.
Larger values of A such as 0.25 and 0.50 would appear
to be consistent with the current state-of-the-art of day-
to-day weather forecasting.

In the case of C'(¢), we assume that this parameter
is an exponentially decreasing function of lead time ¢
of the following form:

C'(t) = (Cx— CR)e™™ + 4, (14)

where B( >0), C, (>0), and C}, (>0) are parameters
to be specified. Moreover, it is assumed that O
< C' < C'. < 1. This particular exponential function
was chosen so that C'(¢) = C, when ¢t = 0 and
C'(t) = C!,when t = oo. Thus, the cost of protection
approaches a constant value C’ (a maximum cost, Cy/
L, which is less than unity) for very short lead times
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FIG. 3. The behavior of the exponential model of the accuracy
parameter p, (¢) for selected values of the parameter 4, with = = 0.2
[see (13)].

and approaches a constant value C’, (a minimum cost,
C,/L, which is greater than zero) for very long lead
times. The parameter B determines the rate at which
C'(t) increases (decreases) as ¢ decreases (increases),
with ¢, = 1/B for this model.

The behavior of C'(t) for selected values of the pa-
rameter B is depicted in Fig. 4 for values of ¢ on the
closed interval [0, 10], when C% = 0.85 and Cj,
= 0.05. As in the case of p,(t), the rate of decrease in
C'(t) as t increases is greater for larger values of B than
for smaller values of B. Since the functions C'(¢) and
pi(t) are defined in an analogous manner, it is not
surprising that they exhibit similar behavior (including
identical e-folding times).

b. Expected expenses and optimal actions
1) CLIMATOLOGICAL INFORMATION

For the exponential model of the cost parameter
C'(t) defined in (14), E(t) in (5) becomes

c(t) = min[(Cx = C,)e™™ + C, 7], (15)

In terms of the parameters of this model, the three
cases identified in section 2c can now be described as
follows: 1) case I, # < C, < Ck; 2)case 2, C), < =
< C%; and 3) case 3, C, < C;, < 7. Moreover, an
expression for ¢*, the critical value of the lead time in
case 2, can be obtained by setting = = C’'(¢) on the
RHS of (15); this process yields

t* = —(1/B) In[(x — CR)/(Cx — CH)].  (16)
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FIG. 4. The behavior of the exponential model of the cost parameter
C’(1) for selected values of the parameter B, with C’, = .85 and
Ci, = 0.05 [see (14)].

Examination of (16) reveals that t* decreases (in-
creases) as B (or C' or C) increases (note that ¢* is
undefined and negative in cases 1 and 3, respectively).
It should also be noted that t* depends only on the
parameters associated with the model for C'(¢) and the
climatological probability (7).

The expression for E-(¢) in (15) is depicted in Fig.
5 for selected values of the parameter B, when C’,
= 0.85, C,, = 0.05, and = = 0.2. These situations rep-
resent particular realizations of case 2, since C, < «
< C%. Thus, E-(t) is constant (0.2) for < t*, and it
is a decreasing function of ¢ for ¢t > t*. For these pa-
rameter values, t* = 1.67, 2.09, and 3.35 when B = 1,
0.8, and 0.5, respectively.

2) IMPERFECT FORECASTS

For the exponential models of p,(¢) and C'(¢) in
(13) and (14), respectively, E'=(¢) in (9) becomes

Ex(t) =a{l + [(Cx— Ce ™™ + C})
—[(1=m)e " +x]}. (17)
As indicated in section 2¢, minimizing expected ex-
pense when the imperfect forecasts are available to the
decision maker involves finding fnin, the value of ¢ that
minimizes E'=(¢). This value of ¢ can be found by dif-
ferentiating E'»(t) in (17) with respect to ¢ and setting
the partial derivative equal to zero, which yields
tmin = [1/(B — A)] In[B(C’, — C})/A(1 — =)].
‘ (18)

MONTHLY WEATHER REVIEW

VOLUME 118

Examination of the second derivative of E%(¢) with
respect to ¢ reveals that E'=(¢4;,) 1s indeed a minimum
if B> A. Thus, E'»(¢) attains a minimum value only
if the cost of protection decreases more rapidly (aslead
time increases) than the accuracy of the forecasts.
Moreover, tyin > 0 if B(Cy — C}) > A(1 — w) and
Imin < 01f B(C% — C,) < A(1 — w). In the latter case,
the realizable minimum value of E’=(t) actually occurs
at t = 0. Therefore, to minimize expected expense in
this case, the decision maker should wait until the last
minute before making his/her decision. With regard
to the sensitivity of f;, to the various parameters, it
increases (decreases) as C’ (C),) increases in all cases.

The expression for E%(¢) in (17) is depicted in Fig.
6 for selected values of the parameter 4, when B
=1, C% = 0.85, C}, = 0.05, and 7= = 0.2. For these sets
of parameter values, {,;, > 0 [see (18)]. Moreover,
the behavior of E'7(7) is similar in each case; it decreases
initially (that is, for small values of ¢), reaches a min-
imum value at #,,;,, and then increases for larger values
of t. Specifically, t;, = 1.72, 1.39, and 1.19 for 4 =
0.3, 0.5, and 0.7, respectively [ from (18)]. As expected,

() decreases and ¢, increases as 4 decreases (that
is, as the rate of decrease in accuracy with increasing
lead time decreases).

Note that tyi, in (18) depends on the parameters
associated with both the cost model and the accuracy
model [that is, with C'(¢) and p,(¢)]. To investigate
the relative sensitivity of 74, to changes in the values
of the parameters 4 and B, we will let « = B/A and
assume that both e and D = In[a(C;, — C})/(1 — )]
are constant. Then tyin/84 = —D/A%*(a — 1) and
Otmin/OB = —aD/B*(a — 1) [ from (18)]. Thus, (min/
0A4)/(0tmin/OB) = o and, since ¢, €xists only when
B > A, this minimum lead time is more sensitive to
changes in A4 (the accuracy parameter ) than to changes
in B (the cost parameter).’

0.25 L 1 1 S S Il 1 Il =t
0.20
0.15 4
EL(1)

0.10 4
005+

(o} T T T T ¥ T T T T

0 1 2 3 4 5

Lead time (t)

FIG. 5. The expected expense for climatological information, E'-(¢),
for selected values of the parameter B, with C’, = 0.85, C;, = 0.05,
and m = 0.2 (case 2).
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FIG. 6. The expected expense for imperfect forecasts, E(¢), for
selected values of the parameter A with B = 1, C, = 0.85, C,
= 0.05, and 7 = 0.2 (case 2).

The behavior of ¢y, as a function of « (=B/A4) for
selected values of 4-and B is depicted in Figs. 7a and
7b, respectively. For fixed values of the accuracy pa-
rameter A (Fig. 7a), tmi, decreases as « increases (that
is, as B increases). This result is not surprising since
increases in the parameter B imply that the cost of
protection is decreasing more rapidly as lead time in-
creases. Moreover, 1y, is more sensitive to changes in
« for small values of 4 (accuracy decreasing slowly)
than for large values of A (accuracy decreasing rapidly).
As expected, tmin is greater for small values of 4 than
for large values of 4.

For fixed values of the cost parameter B (Fig. 7b),
Imin INCreases as « increases (since the accuracy param-
eter A is decreasing). In this case, f,;, is more sensitive
to changes in « for small values of B (cost decreasing
slowly) than for large values of B (cost decreasing rap-
idly). Of course, tmin is greater for small values of B
than for large values of B.

¢. Value of information

For the exponential models of p; (¢) and C'(¢) defined
in (13) and (14), respectively, V'=(#)in (12) becomes

Vi(t) = 7[(1 — m)e™ + =
—(Ch=Cl)e = Cl), =<Cl1) (19a)

and

V() = (1 = 1)[(C — Ch)e~™

+C,—m—me™], =>C'(t). (19b)
Note that (19a) applies to the situation in which =
< C'(t) (the optimal action based on climatological
information is not to protect) and ( 19b) applies to the

situation in which = > C’(¢) (the optimal action based
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on climatological information is to protect). From the
meteorologist’s point of view, it is of interest to deter-
mine ., the lead time at which V'=(¢)in (19) is max-
imized. Differentiation of V'=(¢) in (19a) with respect
to ¢ yields

tmax = [1/(B — A)] In[B(C5 — Ci)/
A(l = m)], ©=<C(), (20)

where V'5(fmax ) 1s indeed a maximum if B> 4. Com-
parison of (18) and (20) reveals that yax = tmin, @
result that is not surprising since V' =(¢) and E'=(t) are
linearly related in this situation [that is, when E'-(f)
= 7; see (10)]. Thus, when the optimal action under
climatological information is not to protect [« < C'(¢)],
the decision maker’s optimal lead time £,;, (minimum
expected expense for imperfect forecasts) is identical
to the forecaster’s optimal lead time 7. (maximum
expected value for imperfect forecasts).

5 : : 1 1 L ! 1
(o) A=03
—— A=05
4— ........ e A=0.7 —
3— -
1'min
2- -
1--.....:_:.:.-_____—__— !
© ' L v T T
1 2 3 a :
a (=B/A)
5 1 1 L L \ | '
—— B=0.5
(b) —_ 50t
4-‘ esenccsse B=2.0
3
tmin
2— ———-—-———""‘——'—__
R I ——— i
© I - ! rr L T
1 2 3 A :

a (=B/A)

FI1G. 7. The behavior of £,,;, as a function of a (= B/ A) for selected
values of (a) the accuracy parameter 4 and (b) the cost param-
eter B.
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Examination of V'=(¢) in (19b) [7 > C'(¢)] reveals
that .., is negative and that forecast value is a de-
creasing function of lead time for ¢ = ¢* [the first de-
rivative of V' (¢) is negative ]. Therefore, the maximum
value of V'=(¢) in this situation must occur at the time
at which = = C'(¢), which is by definition ¢* (see sec-
tion 3c). Thus, under the condition = > C'(¢), tmax
= t* and, unless t,,;, = t* as well [an unlikely event;
cf. (16) and (18)], tmax F Imin- In this situation, then,
the decision maker’s optimal lead time differs from the
forecaster’s optimal lead time. '

With regard to the three cases introduced in section
2¢ (see also section 3b), recall that E-(¢) = = (a con-
stant) in case 1 (7= < C}, < C%) for all values of ¢ and
incase 2 (C, < m < C%)when t <t*. Obviously, V'=(t)
is linearly related to E’=(¢) in such situations. Thus,
tmax = tmin @NA VE(fmax) = V'r(tmin) in these two sit-
uations. '

On the other hand, E-(¢t) = C'(t) (a decreasing
function of ¢) in case 2 when ¢ > t* and in case 3
(C), < C% < =) for all values of ¢. In both situations,
Vie(t)=(1—m)C'(t) — «[1 — py(¢)]}[see (12)]. Thus,

#(t) is a decreasing function of ¢ in these situations.
In case 3, tmax = 0 and V'e(tmax) = V'=(0). Therefore,
the value of information would be maximized if the
decision maker waited until 1 = 0 (zero lead time) to
make his/her decision. On the other hand, ¢, = 0 in
this case, so that minimizing expected expense (the
decision maker’s frue objective) and maximizing ex-
pected value may not be “consistent” objectives.

In case 2 when ¢ > t* tnax = t* and Vie(fmax)
= V'e(t*). Since ty;, = t* in this case, it follows that
tmin = Imax @nd V'e(Zmax) = V'r(tmin). Once again, the
decision maker’s and forecaster’s objectives generally
will not be consistent (in the sense of these objectives

being realized at the same lead time). In particular,

the realizable value of information [V'7(fmi,)] from the
decision maker’s viewpoint will generally be less than
the potential value of information [V #(fmax)] from the
forecaster’s viewpoint.

4. Some numerical results

This section presents numerical examples based on
the time-dependent model of the cost-loss ratio situ-
ation described in section 2b and the exponential ac-
curacy and cost-of-protection models defined in section
3a. Examples are considered for each of the three cases
identified in section 2¢ (see also section 3b). In choos-
ing parameter values for these examples, we have as-
sumed that the units of lead time (¢) are “days,” and
we have specified values of the accuracy parameter (4)
that are consistent with the current state-of-the-art of
day-to-day weather forecasting.

a. Example for case 1

As a numerical example for case 1 (v < C,

< (%), consider a situation in which C, = 0.85, C,
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= (.25, and = = 0.2 (that is, the cost of protection
ranges from 25% of the loss L at very long lead times
10 85% of L at very short lead times and the climato-
logical probability of adverse weather is 0.2). In this
case, the optimal action with climatological informa-
tion is not to protect for all values of ({7 < C'(¢) or,
more specifically, 7 < C7,]. Thus, the imperfect fore-
casts can be of positive value only if it is optimal, at
least occasionally, for the decision maker to take pro-
tective action.

Figure 8 depicts E'«(t), E'=(1), and V'=(¢) in this
example when 4 = 0.5 and B = 1. For t < 0.14, E'(¢)
= E¢(t) = 0.2 and (consequently) V'=(¢) = 0. Evi-
dently, for these very short lead times, even very ac-
curate forecasts cannot “offset” the (relatively) sub-
stantial cost of protection. In fact, for these values of
t,pi(1) < C'(2).

For larger values of ¢(¢t = 0.14), E'=(t) decreases to

" a minimum at f,;;, and then increases once again. Since

E¢(t) is a constant () for all ¢, V'=(¢) is the mirror
image of E'r(t) and tyax = tmin. For the specified pa-
rameter values, fmin = Imax = 1.40, Er(tmin) = 0.170,
and V'e(tmax) = Vr(tmin) = 0.030. In this case, an in-
termediate lead time exists at which it is optimal for
the decision maker to make his/her decision.

b. Examples for case 2

Two numerical examples are considered for case 2
(C,, < © < C%), both of which involve a situation in
which C, = 0.85, C, = 0.05, and = = 0.2. The behavior
of E-(t) and E'=(?) in this situation was described in
Figs. 5 and 6, respectively. In the first example, E(¢),
E%(t), and V'x(t) are depicted in Fig. 9a for the par-
ticular situation in which 4 = 0.5 and B = 1. Here,
Imin = 1.39 < 1* = 1.67, so that t2x = tmin and V 5 fmax)

0.25 1 t It 1 L 1 1 1 1

0.20

4
2
o
>
=
L
S
%
a
>
® 0.5+ -
© 1
S : Eg(t)
3 Ep(D)
< 010+ , L
a2 == V(1)
S
3
S 005+ -
L
= T
L ‘,./ St
O £ T T T T T T T T T =
0 1 2 3 4 5

Lead time (1)

FIG. 8. EL(t), E(t), and V'x(¢) for a numerical example in case
1 (x < Cl\ < Cy)for which 4 =0.5, B=1, C, =0.85, C, = 0.25,
and = = 0.2. .
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FIG. 9. E¢(1), E¥(t), and V':(¢) for numerical examples in case
2 (C, < m < C%) for which (a) 4 = 0.5, B = 1, C = 0.85, C,,
= 0.05,and » = 0.2 and (b) 4 = 0.5, B = 2.5, C; = 085, C,
=0.05,and = = 0.2.

= V'¢(tmin). In particular, Ec(tnin) = 7 = 0.2, E(fmin)
= 0.132, and V&(tnin) = 0.068. It should be noted
that, in the vicinity of ¢yin, both E=(¢) and V'(t) are
relatively flat functions; that is, the values of these
functions are relatively insensitive to small changesin ¢,

In the second example, E(t), E’7(t), and V'=(t) are
depicted in Fig. 9b for the situation in which 4 = 0.5
and B = 2.5. Here, tnin = 0.81 > t* = t. = 0.65.
Moreover, Ec(tmin) = 0.158, E'¥(tmin) = 0.084, and
Vie(tmax) = VE(t*) = 0.114. 1t is of interest to com-
pare the latter with V'5(fmin ), where V'e(fmin) = 0.074.
Thus, in this example, the decision maker’s objective
of minimizing expected expense leads to a value-of-
information estimate that is considerably less than the
maximum value-of-information estimate. Once again,
however, E'=(t) is a relatively flat function in the vi-
cinity of ¢, (=0.81). In fact, E'r(¢max) is only 0.086.
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¢. Example for case 3

As a numerical example for case 3 (C, < C, < ),
we consider a situation in which C, = 0.15, C;, = 0.05,
and = = 0.2. In this case, the optimal action with cli-
matological information is to protect for all values of
t{m > C'(¢) or, more specifically, = > C%]. Thus, the
imperfect forecasts can be of value only if it is optimal
for the decision maker not to take protective action for
some forecasts.

Figure 10 depicts E¢(2), E=(t), and V'=(¢) in this
situation when 4 = 0.5 and B = 1. For these parameter
values, E'r(¢t) and V =(¢) are increasing and decreasing
functions of ¢, respectively. Thus, the minimum (max-
imum) value of E’=(t)[V'=(t)] occurs at ¢t = 0. Specif-
ically, E-(0) = 0.15, E'=(0) = 0.03, and V'7(0) = 0.12.
Moreover, V(1) = O for t = 1.086. In this example,
the decision maker evidently should wait as long as
possible before making his/her decision, since the cost
of protection is relatively small and the decision not
to protect is likely to be “beneficial” only when the
forecasts are relatively accurate. Moreover, the decision
maker’s and forecaster’s objectives can both be realized
at the same lead time (at least for the parameter values
employed in this example).

5. Discussion and conclusion

In this paper we have described a time-dependent
version of the cost-loss ratio situation. Motivation for
considering such a situation was provided by a decision
maker who can postpone the protect/do not protect
decision, but who faces a potential tradeoff as lead time
decreases between increasingly more accurate forecasts
and increasingly more costly protective measures. Ex-
ponential models of the accuracy and cost-of-protection

0.25 - 1 " 1 1 1 i J] 1

0.20 EL() [

0104\

0.05

Expected expense ond expected value

Lead time (t)

FIG. 10. E(t), E#(t), and V'x(?) for a numerical example in case
3(C, < Cy < =) for which 4 = 0.5, B = 1, C;, = 0.15, C;,
=0.05,and = = 0.2.
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parameters were employed as a means of investigating
the optimal use and economic value of calibrated (but
otherwise imperfect ) categorical forecasts in this con-
text. Expressions for the expected expense and eco-
nomic value of the forecasts were obtained for these
models, leading to the identification of optimal lead
times for minimizing expected expense and maximiz-
ing expected (forecast) value. The dependence of the
results (minimum expected expense, maximum eco-
nomic value, optimal lead time) on the values of var-
ious model parameters was investigated and these re-
sults were illustrated by means of numerical examples.

Two general conclusions can be drawn from this
work. First, under the assumption that time-dependent
situations such as that considered here actually exist
in the real world, the results of this study demonstrate
that it is beneficial in at least some circumstances for
an individual faced with such a decision-making prob-
lem to determine the optimal time at which to make
his/her decision. That is, it may not be optimal to
make the decision at the earliest opportunity or to
postpone the decision until the last minute; in some
cases, the decision should be made at an intermediate
lead time. Of course, the optimal lead time in any par-
ticular situation will depend (inter alia) on the manner
in which forecast quality and the decision maker’s
“payoff structure” (that is, costs and losses) change as
a function of lead time.

Another important conclusion arises from the fact
that the optimal lead time from the decision maker’s
viewpoint (Zmin, the time at which expected expense is
minimized ) does not always correspond to the optimal
lead time from the forecaster’s viewpoint ( .y, the time
at which forecast value is maximized ). The results pre-
sented in sections 3 and 4 reveal that fax = fmin ID
some situations (that is, when the optimal action for
climatological information is “do not protect™), but
that fmax # tmin in other situations (that is, when the
optimal action for climatological information is “pro-
tect™). Of course, the decision maker’s role is primary
in this context, since forecasts acquire value only
through their use (Winkler and Murphy 1985). In sit-
uations in which fmax # Imin, the forecaster can still
take considerable satisfaction from the fact that his/
her forecasts have enabled the decision maker to min-
imize expected expense, even though these forecasts
may not always achieve the maximum possible eco-
nomic value.

With regard to conclusions of a more specific nature,
it is of interest to consider briefly the implications of
certain results insofar as they relate to the parameters
of the exponential models. Recall that an optimal lead
time for minimizing expected expense exists only if the
magnitude of the parameter B (which characterizes the
rate of increase in the cost of protection as lead time
decreases) exceeds the magnitude of the parameter 4
(which characterizes the rate of increase in forecast
accuracy as lead time decreases). This condition sug-
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gests that the exponential model may be particularly
appropriate in those situations in which the cost of
protection increases quite rapidly as lead time decreases
and is relatively high for very short lead times. The
identification of real-world situations that satisfy these
conditions would be a useful endeavor. In a related
vein, it should be noted that increases in forecast ac-
curacy (associated with improvements in the state-of-
the-art of weather/climate forecasting) could lead to
decreases in the value of the parameter A, thereby in-
creasing the likelihood that this condition (B > A4)
would be satisfied for a particular decision maker. Thus,
improvements in forecast quality would not only re-
duce the expected expense and increase the optimal
lead time for decision makers for whom this condition
already held, but they would also increase the number
of decision makers who could potentially realize such
benefits. :

The sensitivity of the results to the climatological
probability (=) is also of interest. Examination of the
expression for the optimal lead time [f,; see (18)]
indicates that 7,,;, increases (decreases) as w increases
(decreases). Thus, for relatively rare events (7 small),
which generally also represent adverse weather /climate
conditions, the optimal lead time is relatively short.
On the other hand, for relatively frequent events (7
large) the optimal lead time is relatively long.

Although we believe that the results presented in
this paper provide useful initial insights into optimal
decision making and forecast value in time-dependent
situations, many possible extensions of this work can
be identified. First, in the context of the cost-loss ratio
situation, it would be interesting to investigate forecast
use and value for other time-dependent models of ac-
curacy and cost of protection. In addition, it would be
useful to relax the condition that the marginal proba-
bility of a forecast of adverse weather is equal to the
climatological probability of adverse weather (p, = ;
see section 2a), as well as to explore the use and value
of (multivalued) probability forecasts in this context.
Another possible extension would involve incorporat-
ing the decision maker’s attitude toward risk, especially
since his/her risk preferences might not be constant
over the range of relevant lead times (as assumed here).
Finally, it would be desirable to explore optimal de-
cision making and forecast value in time-dependent
problems of greater complexity and/or dimensionality;
that is, problems involving more than two actions and
two events and including more realistic treatments of
the respective payoff and information structures. Such
studies would further enrich the class of prototype de-
cision-making models that are currently available to
investigate the use and value of weather/climate fore-
casts.
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